13 research outputs found

    A Cognitive Framework to Secure Smart Cities

    Get PDF
    The advancement in technology has transformed Cyber Physical Systems and their interface with IoT into a more sophisticated and challenging paradigm. As a result, vulnerabilities and potential attacks manifest themselves considerably more than before, forcing researchers to rethink the conventional strategies that are currently in place to secure such physical systems. This manuscript studies the complex interweaving of sensor networks and physical systems and suggests a foundational innovation in the field. In sharp contrast with the existing IDS and IPS solutions, in this paper, a preventive and proactive method is employed to stay ahead of attacks by constantly monitoring network data patterns and identifying threats that are imminent. Here, by capitalizing on the significant progress in processing power (e.g. petascale computing) and storage capacity of computer systems, we propose a deep learning approach to predict and identify various security breaches that are about to occur. The learning process takes place by collecting a large number of files of different types and running tests on them to classify them as benign or malicious. The prediction model obtained as such can then be used to identify attacks. Our project articulates a new framework for interactions between physical systems and sensor networks, where malicious packets are repeatedly learned over time while the system continually operates with respect to imperfect security mechanisms

    Securing the Emerging Technologies of Autonomous and Connected Vehicles

    Get PDF
    The Internet of Vehicles (IoV) aims to establish a network of autonomous and connected vehicles that communicate with one another through facilitation led by road-side units (RSUs) and a central trust authority (TA). Messages must be efficiently and securely disseminated to conserve resources and preserve network security. Currently, research in this area lacks consensus about security schemes and methods of disseminating messages. Furthermore, a current deficiency of information regarding resource optimization prevents further efficient development of this network. This paper takes an interdisciplinary approach to these issues by merging both cybersecurity and data science to optimize and secure the network. The proposed method is to apply Prim’s algorithm to an existing vehicular security scheme, Privacy-Preserving Dual Authentication Scheme (PPDAS), to further network efficiency in terms of power and time consumption. When a dual authentication security scheme is in place, the time taken for message dissemination follows a quadratic growth; applying Prim’s algorithm to the security scheme reduces the time to disseminate messages to a linear growth. The number of messages sent was decreased by a magnitude of up to 44.57. Contemporary security schemes are compared with PPDAS to justify the overhead consumption. Through the proposed approach, the usage of network resources, such as power and time, is reduced, which substantially enhances the performance of the vehicular network and allows for the scalability of the IoV

    Incrementally updating the high average-utility patterns with pre-large concept

    Get PDF
    High-utility itemset mining (HUIM) is considered as an emerging approach to detect the high-utility patterns from databases. Most existing algorithms of HUIM only consider the itemset utility regardless of the length. This limitation raises the utility as a result of a growing itemset size. High average-utility itemset mining (HAUIM) considers the size of the itemset, thus providing a more balanced scale to measure the average-utility for decision-making. Several algorithms were presented to efficiently mine the set of high average-utility itemsets (HAUIs) but most of them focus on handling static databases. In the past, a fast-updated (FUP)-based algorithm was developed to efficiently handle the incremental problem but it still has to re-scan the database when the itemset in the original database is small but there is a high average-utility upper-bound itemset (HAUUBI) in the newly inserted transactions. In this paper, an efficient framework called PRE-HAUIMI for transaction insertion in dynamic databases is developed, which relies on the average-utility-list (AUL) structures. Moreover, we apply the pre-large concept on HAUIM. A pre-large concept is used to speed up the mining performance, which can ensure that if the total utility in the newly inserted transaction is within the safety bound, the small itemsets in the original database could not be the large ones after the database is updated. This, in turn, reduces the recurring database scans and obtains the correct HAUIs. Experiments demonstrate that the PRE-HAUIMI outperforms the state-of-the-art batch mode HAUI-Miner, and the state-of-the-art incremental IHAUPM and FUP-based algorithms in terms of runtime, memory, number of assessed patterns and scalability.publishedVersio

    Incrementally updating the high average-utility patterns with pre-large concept

    Get PDF
    High-utility itemset mining (HUIM) is considered as an emerging approach to detect the high-utility patterns from databases. Most existing algorithms of HUIM only consider the itemset utility regardless of the length. This limitation raises the utility as a result of a growing itemset size. High average-utility itemset mining (HAUIM) considers the size of the itemset, thus providing a more balanced scale to measure the average-utility for decision-making. Several algorithms were presented to efficiently mine the set of high average-utility itemsets (HAUIs) but most of them focus on handling static databases. In the past, a fast-updated (FUP)-based algorithm was developed to efficiently handle the incremental problem but it still has to re-scan the database when the itemset in the original database is small but there is a high average-utility upper-bound itemset (HAUUBI) in the newly inserted transactions. In this paper, an efficient framework called PRE-HAUIMI for transaction insertion in dynamic databases is developed, which relies on the average-utility-list (AUL) structures. Moreover, we apply the pre-large concept on HAUIM. A pre-large concept is used to speed up the mining performance, which can ensure that if the total utility in the newly inserted transaction is within the safety bound, the small itemsets in the original database could not be the large ones after the database is updated. This, in turn, reduces the recurring database scans and obtains the correct HAUIs. Experiments demonstrate that the PRE-HAUIMI outperforms the state-of-the-art batch mode HAUI-Miner, and the state-of-the-art incremental IHAUPM and FUP-based algorithms in terms of runtime, memory, number of assessed patterns and scalability.publishedVersio

    Community Detection and Ranking in Big Data Graphs

    Full text link
    Community structures and relation patterns, and ranking them for social networks provide us with great knowledge about the network. A community is defined by determining a lower density of relations between groups comparing to higher density among every group. Such knowledge can be utilized for grouping similar, yet distinct, nodes with applications in health, marketing, and many more. The ever-growing variety of social networks necessitates detection of minute and scattered communities, which are important problems across different research fields including biology, social studies, physics, etc. As a result, analyzing complex networks has become very popular among researchers in academia and the industry. Interactions and inter-individual relations are captured and depicted as social networks graphs. The aforementioned structure analysis helps researchers determine the model, the type, and the degree of relationships. Besides, it can provide guides to predict the future behavior of social networks. There exist two different types of mining and analyses over social networks. The first is to analyze the structure, i.e. finding the k-influential nodes and network regions with the most evolved structure. The second is content-based analysis which is based on the information produced and transferred by the nodes of social networks. The second type of analyses is not suitable to detect and predict patterns or modeling of groups but it deals with optimizing the quality of the previously identified communities. Various methods have been developed to detect communities. Most of them are very expensive in both space and time. Community detection has different criteria and the most important community detection definitions criteria are as follows: a) Because of similarity between taste and desire among community members, communities are able to offer and exchange information; b) Detecting communities helps to understand the structure of the whole networks as the communities are partitions of the network organized by interest and individual functions; c) Detecting communities plays an important role in finding the overall information flow structure of networks, especially in large-scale networks like human brain network. Most network datasets lack a ground truth for communities. Therefore, communities are evaluated based on several features. In other words, the structure and quality of communities are estimated based on the given features. Modularity is one of the most popular criteria to evaluate the quality and structure of a given community detection algorithm. There is another method called Normalized Mutual Information (NMI). NMI measures detected communities accuracy by calculating the entropy of the founded community and the given ground truth. NMI, then, compares the detected communities with the initial structure and computes the accuracy percentage. Ranking communities is a novel research work. Node ranking based on their influence on the network exists in the literature. We extend the concept of ranking nodes and propose to rank the communities. The applications of such influence-based ranking include intrusion detection, target marketing, as well as recommendation systems

    A Cognitive Framework to Secure Smart Cities

    No full text
    The advancement in technology has transformed Cyber Physical Systems and their interface with IoT into a more sophisticated and challenging paradigm. As a result, vulnerabilities and potential attacks manifest themselves considerably more than before, forcing researchers to rethink the conventional strategies that are currently in place to secure such physical systems. This manuscript studies the complex interweaving of sensor networks and physical systems and suggests a foundational innovation in the field. In sharp contrast with the existing IDS and IPS solutions, in this paper, a preventive and proactive method is employed to stay ahead of attacks by constantly monitoring network data patterns and identifying threats that are imminent. Here, by capitalizing on the significant progress in processing power (e.g. petascale computing) and storage capacity of computer systems, we propose a deep learning approach to predict and identify various security breaches that are about to occur. The learning process takes place by collecting a large number of files of different types and running tests on them to classify them as benign or malicious. The prediction model obtained as such can then be used to identify attacks. Our project articulates a new framework for interactions between physical systems and sensor networks, where malicious packets are repeatedly learned over time while the system continually operates with respect to imperfect security mechanisms

    Synthesis of silver nanoparticles using Peganum harmala extract as a green route

    No full text
    In this study, we investigated the synthesis of silver nanoparticles using Peganum harmala water extract at ambient temperature. The Ag nanoparticles (AgNPs) were characterized by ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FT–IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The average particle size of the silver nanoparticles was about 23 nm. Inhibitory activity of the synthesized AgNPs was tested against human pathogens like Escherichia coli and Staphylococcus aureus. The results indicated that the AgNPs showed moderate inhibitory actions, demonstrating its antibacterial value against pathogenic diseases

    High average-utility sequential pattern mining based on uncertain databases

    No full text
    emergence and proliferation of the internet of things (IoT) devices have resulted in the generation of big and uncertain data due to the varied accuracy and decay of sensors and their different sensitivity ranges. Since data uncertainty plays an important role in IoT data, mining the useful information from uncertain dataset has become an important issue in recent decades. Past works focus on mining the high sequential patterns from the uncertain database. However, the utility of a derived sequence increases along with the size of the sequence, which is an unfair measure to evaluate the utility of a sequence since any combination of a high-utility sequence will also be the high-utility sequence, even though the utility of a sequence is merely low. In this paper, we address the limitation of the previous potential high-utility sequential pattern mining and present a potentially high average-utility sequential pattern mining framework for discovering the set of potentially high average-utility sequential patterns (PHAUSPs) from the uncertain dataset by considering the size of a sequence, which can provide a fair measure of the patterns than the previous works. First, a baseline potentially high average-utility sequential pattern algorithm and three pruning strategies are introduced to completely mine the set of the desired PHAUSPs. To reduce the computational cost and accelerate the mining process, a projection algorithm called PHAUP is then designed, which leads to a reduction in the size of candidates of the desired patterns. Several experiments in terms of runtime, number of candidates, memory overhead, number of discovered pattern, and scalability are then evaluated on both real-life and artificial datasets, and the results showed that the proposed algorithm achieves promising performance, especially the PHAUP approach

    Incrementally updating the high average-utility patterns with pre-large concept

    Get PDF
    High-utility itemset mining (HUIM) is considered as an emerging approach to detect the high-utility patterns from databases. Most existing algorithms of HUIM only consider the itemset utility regardless of the length. This limitation raises the utility as a result of a growing itemset size. High average-utility itemset mining (HAUIM) considers the size of the itemset, thus providing a more balanced scale to measure the average-utility for decision-making. Several algorithms were presented to efficiently mine the set of high average-utility itemsets (HAUIs) but most of them focus on handling static databases. In the past, a fast-updated (FUP)-based algorithm was developed to efficiently handle the incremental problem but it still has to re-scan the database when the itemset in the original database is small but there is a high average-utility upper-bound itemset (HAUUBI) in the newly inserted transactions. In this paper, an efficient framework called PRE-HAUIMI for transaction insertion in dynamic databases is developed, which relies on the average-utility-list (AUL) structures. Moreover, we apply the pre-large concept on HAUIM. A pre-large concept is used to speed up the mining performance, which can ensure that if the total utility in the newly inserted transaction is within the safety bound, the small itemsets in the original database could not be the large ones after the database is updated. This, in turn, reduces the recurring database scans and obtains the correct HAUIs. Experiments demonstrate that the PRE-HAUIMI outperforms the state-of-the-art batch mode HAUI-Miner, and the state-of-the-art incremental IHAUPM and FUP-based algorithms in terms of runtime, memory, number of assessed patterns and scalability

    The Efficient Mining of Skyline Patterns from a Volunteer Computing Network

    No full text
    In the ever-growing world, the concepts of High-utility Itemset Mining (HUIM) as well as Frequent Itemset Mining (FIM) are fundamental works in knowledge discovery. Several algorithms have been designed successfully. However, these algorithms only used one factor to estimate an itemset. In the past, skyline pattern mining by considering both aspects of frequency and utility has been extensively discussed. In most cases, however, people tend to focus on purchase quantities of itemsets rather than frequencies. In this article, we propose a new knowledge called skyline quantity-utility pattern (SQUP) to provide better estimations in the decision-making process by considering quantity and utility together. Two algorithms, respectively, called SQU-Miner and SKYQUP are presented to efficiently mine the set of SQUPs. Moreover, the usage of volunteer computing is proposed to show the potential in real supermarket applications. Two new efficient utility-max structures are also mentioned for the reduction of the candidate itemsets, respectively, utilized in SQU-Miner and SKYQUP. These two new utility-max structures are used to store the upper-bound of utility for itemsets under the quantity constraint instead of frequency constraint, and the second proposed utility-max structure moreover applies a recursive updated process to further obtain strict upper-bound of utility. Our in-depth experimental results prove that SKYQUP has stronger performance when a comparison is made to SQU-Miner in terms of memory usage, runtime, and the number of candidates
    corecore